18,669 research outputs found

    Stability analysis of two-temperature radiative shocks; formulation, eigenfunctions, luminosity response and boundary conditions

    Get PDF
    We present a general formulation for stability analyses of radiative shocks with multiple cooling processes, longitudinal and transverse perturbations, and unequal electron and ion temperatures. Using the accretion shocks of magnetic cataclysmic variables as an illustrative application, we investigate the shock instabilities by examining the eigenfunctions of the perturbed hydrodynamic variables. We also investigate the effects of varying the condition at the lower boundary of the post-shock flow from a zero-velocity fixed wall to several alternative types of boundaries involving the perturbed hydrodynamic variables, and the variations of the emission from the post-shock flow under different modes of oscillations. We found that the stability properties for flow with a stationary-wall lower boundary are not significantly affected by perturbing the lower boundary condition, and they are determined mainly by the energy-transport processes. Moreover, there is no obvious correlation between the amplitude or phase of the luminosity response and the stability properties of the system. Stability of the system can, however, be modified in the presence of transverse perturbation. The luminosity responses are also altered by transverse perturbation

    Oscillatory instability of radiative shocks with multiple cooling processes

    Get PDF
    The stand-off shock formed in the accretion flow on to a stationary wall, such as the surface of a white dwarf, may be thermally unstable, depending on the cooling processes which dominate the post-shock flow. Some processes lead to instability, while others tend to stabilize the shock. We consider competition between the destabilizing influence of thermal bremsstrahlung cooling, and a stabilizing process which is a power law in density and temperature. Cyclotron cooling and processes which are of order 1, 3/2 and 2 in density are considered. The relative efficiency and power-law indices of the second mechanism are varied, and particular effects on the stability properties and frequencies of oscillation modes are examined

    Gravitational and distributed heating effects of a cD galaxy on the hydrodynamical structure of its host cluster

    Get PDF
    We investigate the effects of a cD galaxy's gravity and AGN heating of the host galaxy cluster. We consider a standard prescription for the hydrodynamics, with the structures determined by mass continuity, momentum and energy conservation equations in spherical symmetry. The cluster comprises a dark matter halo (DM) and ionised X-ray emitting intracluster gas (ICM), which jointly determine the gravitational potential. The cD galaxy is an additive gravitational potential component. The DM assumes a polytropic equation of state (determined by its microphysics), which could be non-radiative self-interacting particles or more exotically interacting particles. The AGN provides distributed heating, counteracting radiative cooling. Stationary density and velocity dispersion profiles are obtained by numerically integrating the hydrodynamic equations with appropriate boundary conditions. The minimum gas temperature in the cluster core is higher when a cD galaxy is present than when it is absent. The solutions also yield a point-like mass concentration exceeding a minimum mass: presumably the AGN's supermassive black hole (SMBH). Consistency with observed SMBH masses constrains the possible DM equations of state. The constraints are looser when a cD galaxy is present. Distributed (AGN) heating alters cluster global properties, and also reduces the lower limits for the central point-mass, for the preferred DM models in which the dark particles have greater heat capacity than point particles. Eluding these constraints would require dominant non-spherical or anisotropic effects (e.g. bulk rotation, non-radial streaming, asymmetric lumps, or a strong magnetic field)

    Efficient AUC Optimization for Information Ranking Applications

    Full text link
    Adequate evaluation of an information retrieval system to estimate future performance is a crucial task. Area under the ROC curve (AUC) is widely used to evaluate the generalization of a retrieval system. However, the objective function optimized in many retrieval systems is the error rate and not the AUC value. This paper provides an efficient and effective non-linear approach to optimize AUC using additive regression trees, with a special emphasis on the use of multi-class AUC (MAUC) because multiple relevance levels are widely used in many ranking applications. Compared to a conventional linear approach, the performance of the non-linear approach is comparable on binary-relevance benchmark datasets and is better on multi-relevance benchmark datasets.Comment: 12 page

    A study on the interacting Ricci dark energy in f(R,T)f(R,T) gravity

    Full text link
    The present work reports study on the interacting Ricci dark energy in a modified gravity theory named f(R,T)f(R,T) gravity. The specific model f(R,T)=μR+νTf(R,T)=\mu R+\nu T (proposed by R. Myrzakulov, arXiv:1205.5266v2) is considered here. For this model we have observed a quintom-like behavior of the equation of state (EoS) parameter and a transition from matter dominated to dark energy density has been observed through fraction density evolution. The statefinder parameters reveal that the model interpolates between dust and Λ\LambdaCDM phases of the universe.Comment: 12 pages, 5 figure

    Enhancing resilience by reducing critical load loss via an emergent trading framework considering possible resources isolation under typhoon

    Get PDF
    Leveraging distributed resources to enhance distribution network (DN) resilience is an effective measure in response to natural disasters. However, the willingness and economy of distributed resources are typically ignored. To address this issue, this paper proposes an emergent trading framework that uses parking lots (PLs) as resources to provide power support to critical loads (CLs) in a blackout due to typhoons. In this trading framework, an evolutionary Stackelberg game-based trading model is established to consider maximizing all stakeholders' economic benefits, considering possible resources isolation under typical fault scenarios caused by typhoons, and a benefit allocation mechanism is proposed for all stakeholders to motivate all stakeholders to participate in the trading. This framework allows that critical loads could reduce their load loss, parking lots could receive adequate compensation to stimulate them to participate in the trading, and distribution utility could ensure its economic benefits. Furthermore, an iterative evolutionary-Stackelberg solution set-up is applied to obtain the equilibria of the proposed framework. Simulation results on the modified IEEE 69-bus test system and IEEE 123-bus test system reveal the validity of the proposed method

    In silico Assessment of Drug-like Properties of Alkaloids from Areca catechu L Nut

    Get PDF
    Purpose: To investigate in silico the drug-like properties of alkaloids (arecoline, arecaidine, guvacine, guvacoline, isoguvacine, arecolidine and homoarecoline) obtained from the fruits of Areca catechu L (areca nut).Methods: All chemical structures were re-drawn using Chemdraw Ultra 11.0. Furthermore, software including Bio-Loom for Windows - version 1.5, Molinspiration Property Calculator and ACD/I-LAB service were used to predict the drug-like properties of the alkaloids, including relative molecular mass (MW), partition coefficient log P (cLog P), number of hydrogen bond donors (HBD), number of hydrogen bond acceptors (HBA), topological polar surface area (TPSA), number of rotatable bonds (NROTB), pKa, and aqueous solubility at a given pH (LogS). In addition, Lipinski’s rule was used to evaluate druglike properties.Results: From our research, MWs of the seven compounds were all < 500. HBD and cLog P values of the seven compounds were all < 5, and HBA values were all < 10. In addition, TPSA value of each compound was < 60 Å2, and NROTB value was < 10. Besides, pKa values of the seven alkaloids were > 7.5; furthermore, they possess good solubility at pH 1.0, 5.0, and 7.0.Conclusion: All the seven alkaloids possess good drug-like properties, and demonstrated good oral absorption and bioavailability. The results also suggest that these compounds can be further developed into new oral drugs for treating certain diseases.Keywords: Areca catechu L, Areca nut, Drug-like properties, Alkaloids, Arecoline, Arecaidine, Guvacine, Guvacoline, Isoguvacine, Arecolidine, Homoarecoline, In silic

    Polarised radiative transfer, rotation measure fluctuations and large-scale magnetic fields

    Get PDF
    Faraday rotation measure at radio wavelengths is commonly used to diagnose large-scale magnetic fields. It is argued that the length-scales on which magnetic fields vary in large-scale diffuse astrophysical media can be inferred from correlations in the observed RM. RM is a variable which can be derived from the polarised radiative transfer equations in restrictive conditions. This paper assesses the usage of RMF (rotation measure fluctuation) analyses for magnetic field diagnostics in the framework of polarised radiative transfer. We use models of various magnetic field configurations and electron density distributions to show how density fluctuations could affect the correlation length of the magnetic fields inferred from the conventional RMF analyses. We caution against interpretations of RMF analyses when a characteristic density is ill-defined, e.g. in cases of log-normal distributed and fractal-like density structures. As the spatial correlations are generally not the same in the line-of-sight longitudinal direction and the sky plane direction, one also needs to clarify the context of RMF when inferring from observational data. In complex situations, a covariant polarised radiative transfer calculation is essential to capture all aspects of radiative and transport processes, which would otherwise ambiguate the interpretations of magnetism in galaxy clusters and larger-scale cosmological structures

    Polarized radiative transfer, rotation measure fluctuations, and large-scale magnetic fields

    Get PDF
    Faraday rotation measure (RM) at radio wavelengths is commonly used to diagnose large-scale magnetic fields. It is argued that the length-scales on which magnetic fields vary in large-scale diffuse astrophysical media can be inferred from correlations in the observed RM. RM is a variable which can be derived from the polarized radiative transfer equations in restrictive conditions. This paper assesses the usage of rotation measure fluctuation (RMF) analyses for magnetic field diagnostics in the framework of polarized radiative transfer. We use models of various magnetic field configurations and electron density distributions to show how density fluctuations could affect the correlation length of the magnetic fields inferred from the conventional RMF analyses. We caution against interpretations of RMF analyses when a characteristic density is ill defined, e.g. in cases of lognormal-distributed and fractal-like density structures. As the spatial correlations are generally not the same in the line-of-sight longitudinal direction and the sky plane direction, one also needs to clarify the context of RMF when inferring from observational data. In complex situations, a covariant polarized radiative transfer calculation is essential to capture all aspects of radiative and transport processes, which would otherwise ambiguate the interpretations of magnetism in galaxy clusters and larger scale cosmological structures
    corecore